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Abstract

Autoscaling is a hallmark of cloud computing as it allows flexible just-
in-time allocation and release of computational resources in response to
dynamic and often unpredictable workloads. This is especially important
for web applications whose workload is time dependent and prone to flash
crowds. Most of them follow the 3-tier architectural pattern, and are
divided into presentation, application/domain and data layers. In this
work we focus on the application layer. Reactive autoscaling policies
of the type “Instantiate a new Virtual Machine (VM) when the average
server CPU utilisation reaches X%” have been used successfully since the
dawn of cloud computing. But which VM type is the most suitable for
the specific application at the moment remains an open question. In this
work, we propose an approach for dynamic VM type selection. It uses a
combination of online machine learning techniques, works in real time and
adapts to changes in the users’ workload patterns, application changes as
well as middleware upgrades and reconfigurations. We have developed a
prototype, which we tested with the CloudStone benchmark deployed on
AWS EC2. Results show that our method quickly adapts to workload
changes and reduces the total cost compared to the industry standard
approach.

∗To cite this technical report, please use the following: Nikolay Grozev and Rajkumar
Buyya, “Dynamic Selection of Virtual Machines for Application Servers in Cloud Environ-
ments,” Technical Report CLOUDS-TR-2016-1, Cloud Computing and Distributed Systems
Laboratory, The University of Melbourne, February 7, 2016.
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1 Introduction

Cloud computing is a disruptive IT model allowing enterprises to focus on their
core business activities. Instead of investing in their own IT infrastructures, they
can now rent ready-to-use preconfigured virtual resources from cloud providers
in a “pay-as-you-go” manner. Organisations relying on fixed size private infras-
tructures often realise it can not match their dynamic needs, thus frequently
being either under or overutilised. In contrast, in a cloud environment one can
automatically acquire or release resources as they are needed — a distinctive
characteristic known as autoscaling.

This is especially important for large scale web applications, since the num-
ber of users fluctuates over time and is prone to flash crowds as a result of
marketing campaigns and product releases. Most such applications follow the
3-tier architectural pattern and are divided in three standard layers/tiers [1–3]:

• Presentation Layer — the end user interface.

• Business/Domain Layer — implements the business logic. Hosted in
one or several Application Servers (AS).

• Data Layer — manages the persistent data. Deployed in one or several
Database (DB) servers.

A user interacts with the presentation layer, which redirects the requests to
an AS which in turn can access the data layer. The presentation layer is executed
on the client’s side (e.g. in a browser) and thus scalability is not an issue. Scaling
the DB layer is a notorious challenge, since system architects have to balance
between consistency, availability and partition tolerance following the results
of the CAP theorem [4, 5]. This field has already been well explored (Cattel
surveys more than 20 related projects [6]). Furthermore, Google has published
about their new database which scales within and across data centres without
violating transaction consistency [7]. Hence data layer scaling is beyond the
scope of our work.

In general, autoscaling the Application Servers (AS) is comparatively straight-
forward. In an Infrastructure as a Service (IaaS) cloud environment, the AS
VMs are deployed “behind” a load balancer which redirects the incoming re-
quests among them. Whenever the servers’ capacity is insufficient, one or several
new AS VMs are provisioned and associated with the load balancer and the DB
layer — see Figure 1.

But what should be the type of the new AS VM? Most major cloud providers
like Amazon EC2 and Google Compute Engine offer a predefined set of VM
types with different performance capacities and prices. Currently, system engi-
neers “hardcode” preselected VM types in the autoscaling rules based on their
intuition or at best on historical performance observations. However, user work-
load characteristics vary over time leading to constantly evolving AS capacity
requirements. For example, the proportion of browsing, bidding and buying
requests in an e-commerce system can change significantly during a holiday sea-
son, which can change the server utilisation patterns. Middleware and operating
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Figure 1: A 3-tier application in Cloud. Whenever the autoscaling conditions
are activated, a new application server should be provisioned. In this work we
select the optimal VM type for the purpose.

system updates and reconfigurations can lead to changes in the utilisation pat-
terns as well [8]. This can also happen as a result of releasing new application
features or updates.

Moreover, VM performance can vary significantly over time because of other
VMs collocated on the same physical host causing resource contentions [9–11].
Hence even VM instances of the same type can perform very differently. From
the viewpoint of the cloud’s client this can not be predicted.

To illustrate better, let us consider a large scale web application with hun-
dreds of dedicated AS VMs. Its engineers can analyse historical performance
data to specify the most appropriate VM type in the autoscaling rules. However,
they will have to reconsider their choice every time a new feature or a system
upgrade is deployed. They will also have to constantly monitor for workload
pattern changes and to react by adjusting the austoscaling rules. Given that VM
performance capacities also vary over time, the job of selecting the most suit-
able VM type becomes practically unmanageable. This can result in significant
financial losses, because of using suboptimal VMs.

To address this, the key contributions of our work are (i) a machine learn-
ing approach which continuously learns the application’s resource requirements
and (ii) a dynamic VM type selection (DVTS) algorithm, which selects a VM
type for new AS VMs. Since both workload specifics and VM performance
vary over time, we propose an online approach, which learns the application’s
behaviour and the typical VM performance capacities in real time. It relieves
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system maintainers from having to manually reconfigure the autoscaling rules.
The rest of the paper is organised as follows: In Section 2 we describe the re-

lated works. Section 3 provides a succinct overview of our approach. Section 4
discusses the machine learning approaches we employ to “learn” the applica-
tion’s requirements in real time. Section 5 describes how to select an optimal
VM type. Section 6 details the architecture of our prototype and the benchmark
we use for evaluation. Section 7 describes our experiments and results. Finally,
Section 8 concludes and defines pathways for future work.

2 Related Work

The area of static computing resource management has been well studied in
the context of grids, clouds, and even multi-clouds [12]. However, the field of
dynamic resource management in response to continuously varying workloads,
which is especially important for web facing applications [12], is still in its in-
fancy. Horizontal autoscaling policies are the predominant approach for dynamic
resource management and thus they have gained significant attention in recent
years.

Lorido-Botran et al. classify autoscaling policies as reactive and predictive
or proactive [13]. The most widely adopted reactive approaches are based on
threshold rules for performance metrics (e.g. CPU and RAM utilisation). For
each such characteristic the system administrator provides a lower and upper
threshold values. Resources are provisioned whenever an upper threshold is ex-
ceeded. Similarly, if a lower threshold is reached resources are released. How
much resources are acquired or released when a threshold is reached is specified
in user defined autoscaling rules. There are different “flavours” of threshold
based approaches. For example in Amazon Auto Scaling [14] one would typi-
cally use the average metrics from the virtual server farm, while RightScale [15]
provides a voting scheme, where thresholds are considered per VM and an au-
toscaling action is taken if the majority of the VMs “agree” on it. Combinations
and extensions of both of these techniques have also been proposed [16–18].
Predictive or proactive approaches try to predict demand changes in order to
allocate or deallocate resources. Multiple methods using approaches like rein-
forcement learning [19,20], queuing theory [21] and Kalman filters [22] to name
a few have been proposed.

Our work is complementary to all these approaches. They indicate at what
time resources should be provisioned, but do not select the resource type. Our
approach selects the best resource (i.e. VM type) once it has been decided that
the system should scale up horizontally.

Fernandez et al. propose a system for autoscaling web applications in
clouds [23]. They monitor the performance of different VM types to infer their
capacities. Our approach to this is different, as we inspect the available to each
VM CPU capacity and measure the amount of “stolen” CPU instructions by
the hypervisor from within the VM itself. This allows us to normalise the VMs’
resource capacities to a common scale, which we use to compare them and for
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further analysis. Furthermore, their approach relies on a workload predictor,
while ours is usable even in the case of purely reactive autoscaling.

Singh et al. use k-means clustering to analyse the workload mix (i.e. the
different type of sessions) and then use a queueing model to determine each
server’s suitability [24]. However, they do not consider the performance vari-
ability of virtual machines, which we take into account. Also, they do not select
the type of resource (e.g. VM) to provision and assume there is only one type,
while this is precisely the focus of our work.

A part of our work is concerned with automated detection of application
behaviour changes through a Hierarchical Temporal Memory (HTM) model.
Similar work has been carried out by Cherkasova et al. [8], who propose a
regression based anomaly detection approach. However, they analyse only the
CPU utilisation. Moreover they consider that a set of user transactions’ types is
known beforehand. In contrast, our approach considers RAM as well and does
not require application specific information like transaction types. Tan et al.
propose the PREPARE performance anomaly detection system [25]. However,
their approach can not be used by a cloud client, as it is built on top of the Xen
virtual machine manager to which external clients have no access.

Another part of our method is concerned with automatic selection of the
learning rate and momentum of an artificial neural network (ANN). There
is a significant amount of literature in this area as surveyed by Moreira and
Fiesler [26]. However, the works they overview are applicable for static data
sets and have not been applied to learning from streaming online data whose
patterns can vary over time. Moreover, they only consider how the intermedi-
ate parameters of the backpropagation algorithm vary and do not use additional
domain specific logic. Although our approach is inspired by the work of Vogl et
al. [27] as it modifies the learning rate and momentum based on the prediction
error, we go further and we modify them also based on the anomaly score as
reported by the Hierarchical Temporal Memory (HTM) models.

3 Method Overview

Figure 2 depicts an overview of our machine learning approach and how the
system components interact. Within each AS VM we install a monitoring pro-
gram which periodically records utilisation metrics. These measurements are
transferred to an autoscaling component, which can be hosted either in a cloud
VM or on-premises. It is responsible for (i) monitoring AS VMs’ performance
(ii) updating machine learning models of the application behaviour and (iii)
autoscaling.

Within each AS VM the utilisation monitors report statistics about the
CPU, RAM, disk and network card utilisations and the number of currently
served users. These records are transferred every 5 seconds to the autoscaling
component, where they are normalised, as different VMs have different de facto
resource capacities. In the machine learning approaches we only consider the
CPU and RAM utilisations, as disk and network utilisations of AS VMs are
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Figure 2: System components and their interaction.

typically small [28, 29].
For each AS VM the autoscaler maintains a separate single-region Hier-

archical Temporal Memory (HTM) model [30], which is overviewed in a later
section. In essence we use HTMs to detect changes in the application behaviour
of each AS VM. We prefer HTM to other regression based anomaly detection
approaches, as it can detect anomalies on a stream of multiple parameters (e.g.
CPU and RAM). Whenever monitoring data is retrieved from an AS VM, the
autoscaler trains its HTM with the received number of users, CPU and RAM
utilisations and outputs an anomaly score defining how “unexpected” the data
is.

As a next step we use these utilisation measurements to train a 3-tier artificial
neural network (ANN) about the relationship between the number of served
users and resource consumptions. We choose to use an ANN because of its
suitability for online data streams. Other “sliding window” approaches operate
only on a portion of the data stream. As a system’s utilisation patterns can
remain the same for long time intervals, the window sizes may need to become
impractically large or even be dynamically adjusted. On the contrary, an ANN
does not operate on a fixed time window and is more adept with changes in the
incoming data stream, as we will detail in a later section.

There is only one ANN and training samples from all AS VMs are used
to train it. In essence the ANN represents a continuously updated regression
model, which given a number of users predicts the needed resources to serve
them within a single VM without causing resource contentions. Thus, we need
to filter all training samples, which were taken during anomalous conditions
(e.g. insufficient CPU or RAM capacity causing intensive context switching or
disk swapping respectively). Such samples are not indicative of the relation-
ship between number of users and the resource requirements in the absence of
resource contentions. Furthermore, we use the anomaly score of each training
sample (extracted from HTM) to determine the respective learning speed and
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momentum parameters of the back propagation algorithm so that the ANN
adapts quickly to changes in the utilisation patterns.

Training the ANN and the HTMs happens online from the stream of VM
measurements in parallel with the running application. Simultaneously we also
maintain a VM capacity repository of the latest VM capacity measurements.
When a new VM is needed by the autoscaling component, we use this reposi-
tory to infer the potential performance capacity of all VM types. At that time
the ANN is already trained adequately and given the predicted performance
capacities can be used to infer how many users each VM type could serve simul-
taneously. Based on that we select the VM type, with minimal cost to number
of users ratio.

4 Learning Application Behaviour

4.1 Utilisation Monitoring

To measure VM performance utilisation, we use the SAR, mpstat, vmstat and
netstat Linux monitoring tools. We use the mpstat %idle metric to measure the
percentage of time during which the CPU was idle. The %steal metric describes
the percentage of “stolen” CPU cycles by a hypervisor (i.e. the proportion of
time the CPU was not available to the VM) and can be used to evaluate the
actual VM CPU capacity. Similarly, SAR provides the %util and %ifutil metrics
as indicative of the disk’s and network card’s utilisations.

Measuring the RAM utilisation is more complex as operating systems keep
in memory cached copies of recently accessed disk sectors in order to reduce
disk access [29]. Although in general this optimisation is essential for VM per-
formance, web application servers (AS) are not usually I/O bound, as most of
the application persistence is delegated to the data base layer. Hence, using the
vmstat RAM utilisation metrics can be an overestimation of the actual memory
consumption as it includes rarely accessed disk caches. Thus, we use the “active
memory” vmstat metric to measure memory consumption instead. It denotes
the amount of recently used memory, which is unlikely to be claimed for other
purposes.

Lastly, we need to evaluate the number of concurrently served users in an
AS VM. This could be extracted from the AS middleware, but that would mean
writing specific code for each type of middleware. Moreover, some proprietary
solutions may not expose this information. Therefore, we use the number of
distinct IP addresses with which the server has an active TCP socket, which can
be obtained through the netstat command. Typically, the AS VM is dedicated
to running the AS and does not have other outgoing connections except for the
connection to the persistence layer. Therefore, the number of addresses with
active TCP sockets is a good measure of the number of currently served users.
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4.2 Normalisation and Capacity Estimation

Before proceeding to train the machine learning approaches, we need to nor-
malise the measurements which have different “scales”, as the VMs have dif-
ferent RAM sizes and CPUs with different frequencies. Moreover, the actual
CPU capacities within a single VM vary over time as a result of the dynamic
collocation of other VMs on the same host.

As a first step in normalising the CPU load, we need to evaluate the ac-
tual CPU capacity available to each VM. This can be extracted from the
/proc/cpuinfo Linux kernel file. If the VM has n cores, /proc/cpuinfo will
list meta information about the physical CPU cores serving the VM including
their frequencies fr1, ...frn. The sum of these frequencies is the maximal pro-
cessing capacity the VM can get, provided the hypervisor does not “steal” any
processing time. Using the %steal mpstat parameter we can actually see what
percentage of CPU operations have been taken away by the hypervisor. Sub-
tracting this percentage from the sum of frequencies gives us the actual VM CPU
capacity at the time of measurement. To normalise we further divide by the
maximal CPU core frequency frmax multiplied by the maximal number of cores
nmax cores of all considered VMs in the cloud provider. This is a measure of the
maximal VM CPU capacity one can obtain from the considered VM types. As
clouds are made of commodity hardware, we will consider frmax = 3.5GHZ.
This ensures that all values are in the range (0, 1], although for some cloud
providers all values may be much lower than 1, depending on the underlying
hardware they use. This is formalised in Eq. 1.

cpuCapacityNorm =

(100−%steal)
n∑

i=0

fri

100 nmax cores frmax
(1)

Having computed the VM CPU capacity, we store it into the VM capacity
repository, so we can use it later on to infer the capacities of future VMs. Each
repository record has the following fields:

• time - a time stamp of the capacity estimation;

• vm-type - an identifier of the VM type - e.g. “m1.small”;

• vm-id - a unique identifier of the VM instance - e.g. its IP or elastic DNS
address;

• cpuCapacityNorm - the computed CPU capacity.

If we further subtract the %idle percentage from the capacity we will get
the actual CPU load given in Eq. 2.

cpuLoadNorm =

(100−%idle−%steal)
n∑

i=0

fri

100 nmax cores frmax
(2)
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Normalising the RAM load and capacity is easier, as they do not fluctuate
like the CPU capacity. We divide the active memory by the maximal amount
of memory RAMmax in all considered virtual machine types in the cloud - see
Eq. 3.

ramLoadNorm =
active memory

RAMmax
(3)

Whenever a new AS VM is needed, we have to estimate the CPU and RAM
capacities of all available VM types based on the capacity repository and their
performance definitions provided by the provider. The normalised RAM ca-
pacity of a VM type is straightforward to estimate as we just need to divide
the capacity in the provider’s specification by RAMmax. To estimate the CPU
capacity of a VM type we use the mean of the last 10 entries’ capacities for
this type in the capacity repository. If there are no entries for this VM type in
the repository (i.e. no VM of this type has been instantiated) we can heuristi-
cally extrapolate the CPU capacity from the capacities of the other VM types.
Typically IaaS providers specify an estimation of each VM type’s CPU capacity
- e.g. Google Compute Engine Units (GCEU) in Google Compute Engine or
Elastic Compute Units (ECU) in AWS. Hence given an unknown VM type vmt
we can extrapolate its normalised CPU capacity as:

cpuCapacity(vmt) =

1

|V |
∑

vmti∈V

cpuCapacity(vmti)× cpuSpec(vmti)

cpuSpec(vmt)
(4)

Where V is the set of VM types present in the capacity repository and
whose CPU capacity can be determined from previous measurements, |V | is its
cardinality, and cpuSpec(vmti) defines the cloud provider’s estimation of a VM
type’s capacity - e.g. number of GCEUs or ECUs.

4.3 Anomaly Detection Through HTM

The Hierarchical Temporal Memory (HTM) model is inspired by the structure
and organisation of the neocortex. It has been developed and commercialised by
the Grok company [31] (formerly Numenta [32]), and follows the concepts from
Jeff Hawkins’ book “On Intelligence” [33]. The model creators build upon the
seminal work of Mountcastle [34] that the neocortex is predominantly uniform
in structure and function even in regions handling different sensory inputs - e.g.
visual, auditory, and touch. The HTM model tries to mimic this structure in a
computational model. There are several differences compared to the biological
structure of the neocortex in order to be computationally viable as described in
the implementation white paper [30]. Grok’s implementation is available as an
open source project called NuPIC [35]. In this section, we provide only a brief
overview of HTM to introduce the reader to this concept. The interested reader
is referred to the official documentation [30].
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HTMs consist of one or several stacked regions. During inference, input ar-
rives into the lowest region, whose output serves as input to the successive one
and so forth until the topmost region outputs the final result. The purpose of
a region is to convert noisy input sequences to more stable abstract representa-
tions. Conceptually, the different regions represent different levels of abstraction
in the learning process - i.e. the lowest level recognises low-level patterns, while
each higher level layer recognises more complex ones based on the result of the
previous one. In this work, we use single-region HTMs and we will focus on
them in the rest of the section.

A HTM region consists of columns of cells, which are most often arranged
in a three dimensional grid - see Figure 3. Each cell can be in one of three
possible states: (i) active form feed forward input, (ii) active from lateral input
(i.e. predicted), or (iii) inactive. Conceptually, active cells represent the state of
the last input and predicted cells represent the likely state after future inputs.
A HTM region receives as input a bit sequence. Special encoders are used to
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convert input objects into bitwise representations, so that objects which are
“close” in the sense of the target domain have similar bit representations. Upon
receiving new binary input the HTM changes the states of the columns based
on several rules summarised below.

As a first step the HTM has to decide which columns’ cells will be activated
for a given input - an algorithm known as Spatial Pooling. It nullifies most of the
1 bits, so that only a small percentage (by default 2%) are active. Each column
is connected with a fixed sized (by default 50% of the input length) random
subset of input bits called the potential pool. Each column’s connection to an
input bit has a ratio number in the range [0,1] associated with it known as the
permanence. HTM automatically adjusts the permanence value of a connection
after a new input record arrives, so that input positions whose value have been
0 or 1 and are members of the potential pool of a selected column are decreased
or increased respectively. Connections with permanences above a predefined
thresholds are considered active. Given an input, for each column the HTM
defines its overlap score as the number of active bits with active connections.
Having computed this for every column, HTM selects a fixed sized (by default
2%) set of columns with the highest overlap score, so that no two columns within
a predefined radius are active.

As a second step, HTM decides which cells within these columns to activate.
This is called Temporal Pooling. Within each of the selected columns the HTM
activates only the cells which are in predicted state. If there are no cells in
predicted state within a column, then all of its cells are activated, which is also
known as bursting.

Next, the HTM makes a prediction of what its future state will be - i.e.
which cells should be in predicted state. The main idea is that when a cell
activates it establishes connections to the cells which were previously active.
Each such connection is assigned a weight number. Over time if the two nodes
of a connection become active in sequence again, this connection is strengthened,
i.e. the weight is increased. Otherwise, the connection slowly decays, i.e. the
weight is gradually decreased. Once a cell becomes active, all non-active cells
having connections to it with weights above a certain threshold are assigned
the predicted state. This is analogous to how synapses form and decay between
neurons’ dendrites in the neocortex in response to learning patterns.

The presence of predicted cell columns allows a HTM to predict what will
be its likely state in terms of active cells after the next input. However, it also
allows for the detection of anomalies. For example, if just a few predicted states
become active this is a sign that the current input has not been expected. Thus
the anomaly score is defined as the proportion of active spatial pooler columns
that were incorrectly predicted and is in the range [0, 1].

In our environment every 5 seconds we feed each HTM with a time stamp,
the number of users and the CPU and RAM utilisations of the respective VM.
We use the standard NuPIC scalar and date encoders to convert the input to
binary input. As a result we get an anomaly score denoting how expected the
input is, in the light of the previously described algorithms.
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4.4 ANN Training

Figure 4 depicts the topology of the artificial neural network (ANN). It has
one input — the number of users. The hidden layer has 250 neurons with the
sigmoid activation function. The output layer has two output nodes with linear
activation functions, which predict the normalised CPU and RAM utilisations
within an AS VM.

Once a VM’s measurements are received and normalised and the anomaly
score is computed by the respective HTM region, the ANN can be trained. As
discussed, we need to filter out the VM measurements which are not repre-
sentative of normal, contention free application execution, in order to “learn”
the “right” relationship between number of users and resource utilisations. We
filter all VM measurements in which the CPU, RAM, hard disk or network
card utilisations are above a certain threshold (e.g. 70%). Similarly, we filter
measurements with negligible load — i.e. less than 25 users or less than 10%
CPU utilisation. We also ignore measurements from periods during which the
number of users has changed significantly — e.g. in the beginning of the period
there were 100 users and at the end there were 200. Such performance obser-
vations are not indicative of an actual relationship between number of users
and resource utilisations. Thus, we ignore measurements for which the number
of users is less than 50% or more than 150% of the average of the previous 3
measured numbers of users from the same VM.

Since we are training the ANN with streaming data, we need to make sure it
is not overfitted to the latest training samples. For example if we have constant
workload for a few hours we will be receiving very similar training samples in
the ANN during this period. Hence the ANN can become overfitted for such
samples and lose its fitness for the previous ones. To avoid this problem, we filter
out measurements/training samples, which are already well predicted. More
specifically, if a VM measurement is already predicted with a root mean square
error (RMSE) less than 0.01 it is filtered out and the ANN is not trained with
it. We call this value rmsepre because it is obtained for each training sample
before the ANN is trained with it. It is computed as per Eq. 5, where outputi
and expectedi are the values of the output neurons and the expected values
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respectively.

rmsepre =
√∑

(outputi − expectedi)2 (5)

With each measurement, which is not filtered out, we perform one or several
iterations/epochs of the back-propagation algorithm with the number of users
as input and the normalised CPU and RAM utilisations as expected output.
The back-propagation algorithm has two important parameters — the learning
rate and the momentum. In essence, the learning rate is a ratio number in the
interval (0, 1) which defines the amount of weight update in the direction of
the gradient descent for each training sample [26]. For each weight update, the
momentum term defines what proportion of the previous weight update should
be added to it. It is also a ratio number in the interval (0, 1). Using a momentum
the neural network becomes more resilient to oscillations in the training data
by “damping” the optimisation procedure [26].

For our training environment we need a low learning rate and a high mo-
mentum, as there are a lot of oscillations in the incoming VM measurements.
We select the learning rate to be lr = 0.001 and the momentum m = 0.9. We
call these values the ideal parameters, as these are the values we would like to
use once the ANN is close to convergence. However, the low learning rate and
high momentum result in slow convergence in the initial stages, meaning that
the ANN may not be well trained before it is used. Furthermore, if the workload
pattern changes, the ANN may need a large number of training samples and
thus time until it is tuned appropriately. Hence the actual learning rate and
momentum must be defined dynamically.

One approach to resolve this is to start with a high learning rate and low
momentum and then respectively decrease/increase them to the desired val-
ues [26, 27]. This allows the back-propagation algorithm to converge more
rapidly during the initial steps of the training. We define these parameters
in the initial stages using the asymptotic properties of the sigmoid function,
given in Eq. 6.

s(x) =
1

1− e−x
(6)

As we need to start with a high learning rate and then decrease it gradually
to lr, we could define the learning rate lrk for the k-th training sample as
s(−k). However, the sigmoid function decreases too steeply for negative integer
parameters and as a result the learning rate is higher than lr for just a few
training samples. To solve this we use the square root of k instead and thus our
first approximation of the learning rate is:

lr
(1)
k = max(lr, s(−

√
k)) (7)

As a result lr
(1)
k gradually decreases as more training samples arrive. Figure 5

depicts how it changes over time.
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Figure 5: The lr
(1)
k approximation of the learning rate and the respective mo-

mentum during the initial ANN training stages.

We also need to ensure that it increases in case unusual training data sig-

nalling a workload change arrives and thus we need to elaborate lr
(1)
k . For

this we keep a record of the last 10 samples’ anomaly scores and errors (i.e.
rmsepre). The higher the latest anomaly scores, the more “unexpected” the
samples are and therefore the learning rate must be increased. Similarly, the
higher the sample’s rmsepre compared to the previous errors, the less fit for
it the ANN is and thus the learning rate must be increased as well. Thus our
second elaborated approximation of the learning rate is:

lr
(2)
k = lr

(1)
k max(1,

rmseprek

rmse
)

9∏
i=0

2s(ank−i) (8)

where ank and rmseprek are the anomaly score and the error of the k-th
sample and rmse is the average error of the last 10 samples. Note that we use
the sigmoid function for the anomaly scores in order to diminish the effect of
low values.

In some cases the learning rate can become too big in the initial training
iterations, which will in fact hamper the convergence. To overcome this prob-

lem, for each sample k we run a training iteration with lr
(2)
k , compute its RMSE

rmsepostk and then revert the results of this iteration. By comparing rmseprek

and rmsepostk we can see if training with this lr
(2)
k will contribute to the conver-

gence [27]. If not, we use the ideal parameter lr instead. Thus we finally define
the learning rate parameter lrk in Eq. 9:

lrk =

{
lr

(2)
k if rmseprek > rmsepostk

lr otherwise
(9)

Similarly we have to gradually increase the momentum as we decrease the
learning rate until the ideal momentum is reached. If a workload change is
present we need to decrease the momentum in order to increase the learning
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speed. Hence, we can just use the ratio of the ideal learning rate lr to the
current one as shown in Eq. 10.

mk = min(m,
lr

lr
(2)
k

) (10)

Figure 5 depicts how the learning rate and momentum change during the
initial training stages, given there are no anomalies, accuracy losses and ∀k :

rmseprek > rmsepostk — i.e. when ∀k : lr
(1)
k = lr

(2)
k = lrk. Figure 7 shows the

actual lrk given realistic workload.
Furthermore, to speed up convergence it is beneficial to run multiple epochs

(i.e. repeated training iterations) with the first incoming samples and with
samples taken after a workload change. The ideal learning rate lr and its ap-

proximation lr
(2)
k already embody this information and we could simply use

their ratio. However,
lr

(2)
k

lr can easily exceed 300 given lr = 0.001, resulting in
over-training with particular samples. Hence we take the logarithm of it as in
Eq. 11:

ek =

⌊
1 + ln(

lr
(2)
k

lr
)

⌋
(11)

5 Virtual Machine Type Selection

When a new VM has to be provisioned the ANN should be already trained so
that we can estimate the relationship between number of users and CPU and
RAM requirements. The procedure is formalised in Algorithm 1. We loop over
all VM types V T (line 3) and for each one we estimate its normalised CPU and
RAM capacity based on the capacity repository as explained earlier (lines 5-6).
The VM cost per time unit (e.g. hour in AWS or minute in Google Compute
Engine) is obtained from the provider’s specification (line 7).

Next we approximate the number of users that a VM of this type is expected
to be able to serve (lines 10-18). We iteratively increase n by ∆ starting from
minU , which is the minimal number of users we have encountered while train-
ing the neural network. We use the procedure predict (defined separately in
Algorithm 2) to estimate the normalised CPU and RAM demands that each of
these values of n would cause. We do so until the CPU or RAM demands exceed
the capacity of the inspected VM type. Hence, we use the previous value of n
as an estimation of the number of users a VM of that type can accommodate.
Finally, we select the VM type with the lowest cost to number of users ratio
(lines 20-23).

Algorithm 2 describes how to predict the normalised utilisations caused by
n concurrent users. If n is less than the maximum number of users maxU we
trained the ANN with, then we can just use the ANN’s prediction (line 5).
However, if n is greater than maxU the ANN may not predict accurately. For
example if we have used a single small VM to train the ANN, and then we try to
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Algorithm 1: Dynamic VM Type Selection (DVTS)

input : V T , ann, ∆, minU , maxU

1 bestV mt←− null;
2 bestCost←− 0;

3 for vmt ∈ V T ; // Inspect all VM types
4 do
5 cpuCapacity ←− vmt’s norm. CPU capacity ;
6 ramCapacity ←− vmt’s norm. RAM capacity;
7 vmtCost←− vmt’s cost per time unit;

8 userCapacity ←− 0;
9 n←− minU ;

10 while True ; // Find how many users it can take
11 do
12 cpu, ram←− predict(ann, n,minU,maxU);
13 if cpu < cpuCapacity and ram < ramCapacity then
14 userCapacity ←− n;
15 else
16 break;
17 end
18 n←− n + ∆;

19 end

// Approximate the cost for a user per time unit

20 userCost←− vmtCost
userCapacity ;

// Find the cheapest VM type
21 if userCost < bestCost then
22 bestCost←− userCost;
23 bestV mt←− vmt;

24 end

25 end
26 return bestV mt;

predict the capacity of a large VM, n can become much larger than the entries
of the training data and the regression model may be inaccurate. Thus, we
extrapolate the CPU and RAM requirements (lines 7-11) based on the range of
values we trained the ANN with and the performance model we have proposed
in a previous work [29].

6 Benchmark and Prototype

There are two main approaches for experimental validation of a distributed
system’s performance — through a simulation or a prototype. Discrete event
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Algorithm 2: Resource Utilisation Estimation

input : ann, n, minU , maxU

1 cpu←− 0;
2 ram←− 0;

3 if n < maxUsers ; // If within range - use ANN
4 then
5 cpu, ram←− ann.run(n);
6 else

// If outside range - extrapolate

7 minRam,minCPU ←− ann.run(minU);
8 maxRam,maxCPU ←− ann.run(maxU);

9 cpuPerUser ←− (maxCPU−minCPU)
(maxU−minU) ;

10 ramPerUser ←− (maxRam−minRam)
(maxU−minU) ;

11 cpu←− maxCPU + cpuPerUser(n−maxU)
ram←− maxCPU + ramPerUser(n−maxU)

12 end
13 return cpu, ram;

simulators like CloudSim [36] have been used throughout industry and academia
to quickly evaluate scheduling and provisioning approaches for large scale cloud
infrastructure without having to pay for expensive test beds. Unfortunately,
such simulators work on a simplified cloud performance model and do not rep-
resent realistic VM performance variability, which is essential for testing our
system. Moreover, simulations can be quite inaccurate when the simulated sys-
tem serves resource demanding workloads, as they do not consider aspects like
CPU caching, disk data caching in RAM and garbage collection [29]. Therefore,
we test our method through a prototype and a standard benchmark deployed
in a public cloud environment.

We validate our approach with the CloudStone [37, 38] web benchmark de-
ployed in Amazon AWS. It follows the standard 3-tier architecture. By default
CloudStone is not scalable, meaning that it can only use a single AS. Thus
we had to extend it to accommodate multiple servers. Our installation scripts
and configurations are available as open source code. For space considerations
we will not discuss these technical details and will only provide an overview.
The interested readers can refer to our online documentation and installation
instructions.1

The benchmark deployment topology is depicted in Figure 6. CloudStone
uses the Faban harness to manage the runs and to emulate users. The faban
driver, which is deployed in the client VM communicates with the faban agents
deployed in other VMs to start or stop tests. It also emulates the incoming

1http://nikolaygrozev.wordpress.com/2014/06/02/advanced-automated-cloudstone-setup-
in-ubuntu-vms-part-2/

17



Client VM

App. Server VM
DB Server VM

         Faban 
         Driver

        Nginx Server    MySql: Olio 
   Database

     Tomcat: 
     GeoCoder

        NFS Storage: 
     media files

NFS Server VM

      Disk Storage:
    media files

Load Balancer VM

   HAProxy

    Faban 
    Agent

HTTP

SQL

N
FS

SSH, Java RMI

SSH, Java RMI

SSH, Java RMI

HTT
P

App. Server VM

       Nginx Server 

        NFS Storage: 
     media files

...

NFS

HTTP

SQL

    Faban 
    Agent

    Faban 
    Agent

Figure 6: CloudStone benchmark’s extended topology.

user requests to the application. These requests arrive at a HAProxy load
balancer which distributes them across one or many application servers (AS).
CloudStone is based on the Olio application, which is a PHP social network
website deployed in a Nginx server. In the beginning we start with a single AS
“behind” the load balancer. When a new AS VM is provisioned we associate
it with the load balancer. We update its weighted round robin policy, so that
incoming request are distributed among the AS VMs proportionally to their
declared CPU capacity (i.e. ECU).

The persistent layer is hosted in a MySql server deployed within a separate
DB VM. CloudStone has two additional components - (i) a geocoding service
called GeoCoder, hosted in an Apache Tomcat server and (ii) a shared file storage
hosting media files. They are both required by all application servers. We have
deployed the geocoding service in the DB VM. The file storage is deployed in
a Network File System (NFS) server on a separate VM with 1TB EBS storage,
which is mounted from each AS VM.

We use “m3.medium” VMs for the client, load balancer and DB server and
“m1.small” for the NFS server. The types of the AS VMs are defined differently
for each experiment. All VMs run 64bit Ubuntu Linux 14.04.

Our prototype of an autoscaling component is hosted on an on-premises
physical machine and implements the previously discussed algorithms and ap-
proaches. It uses the JClouds [39] multi-cloud library to provision resources, and
thus can be used in other clouds as well. We use the NuPIC [35] and FANN [40]
libraries to implement HTM and ANN respectively. We ignore the first 110
anomaly scores reported from the HTM, as we observed that these results are
inaccurate (i.e. always 1 or 0) until it receives initial training. Whenever a new
AS VM is provisioned we initialise it with a deep copy of the HTM of the first AS
VM, which is the most trained one. The monitoring programs deployed within
each VM are implemented as bash scripts, and are accessed by the autoscaling
component through SSH. Our implementation of Algorithm 2 uses ∆ = 5.

Previously we discussed that the number of current users could be approx-
imated by counting the number of distinct IP addresses to which there is an
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Table 1: AWS VM type definitions.
VM type ECU RAM Cost per hour
m1.small 1 1.7GB $0.058
m1.medium 2 3.75GB $0.117
m3.medium 3 3.75GB $0.098

active TCP session. However, in CloudStone all users are emulated from the
same client VM and thus have the same source IP address. Thus, we use the
number of recently modified web server session files instead.

Our autoscaling component implementation follows the Amazon Auto Scal-
ing [14] approach and provisions a new AS VM once the average utilisation of
the server farm reaches 70% for more than 10 seconds. Hence, we ensure that
in all experiments the AS VMs are not overloaded. Thus, even if there are SLA
violations, they are caused either by the network or the DB layer, and the AS
layer does not contribute to them. We also implement a cool down period of 10
minutes.

7 Validation

In our experiments, we consider three VM types: m1.small, m1.medium and
m3.medium. Table 1 summarises their cost and declared capacities in the Syd-
ney AWS region which we use.

In all experiments we use the same workload. We start by emulating 30 users
and each 6 minutes we increase the total number of users with 10 until 400 users
are reached. To achieve this we run a sequence of CloudStone benchmarks, each
having 1 minute ramp-up and 5 minutes steady state execution time. Given
CloudStone’s start-up and shut-down times, this amounts to more than 5 hours
per experiment. The goal is to gradually increase the number of users, thus
causing the system to scale up multiple times.

To test our approach in the case of a workload characteristic change we
“inject” such a change 3.5 hours after each experiment’s start. To do so we
manipulate the utilisation monitors to report higher values. More specifically
they increase the reported CPU utilisations with 10% and the reported RAM
utilisation with 1GB plus 2MB for every currently served user.

We implement one experiment, which is initialised with a m1.small AS VM
and each new VM’s type is chosen based on our method (DVTS). We also
execute 3 baseline experiments, each of which statically selects the same VM
type whenever a new VM is needed, analogously to the standard AWS Auto
Scaling rules.

First we investigate the behaviour of DVTS before the workload change. It
continuously trains one HTM for the first AS VM and the ANN. In the initial
stages the ANN learning rate and momentum decrease and increase respectively
to facilitate faster training. For example, the learning rate lrk (defined in Eq. 9)
during the initial stages is depicted in Fig 7. It shows how lrk drastically reduces
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Figure 7: Learning rate lrk during initial stages of training the ANN.

as the ANN improves its accuracy after only a few tens of training samples. Once
the AS VM gets overloaded we select a new VM type. At this point we only
have information about m1.small in the capacity repository and therefore we
infer the other CPU capacities based on Eq. 4. Finally using Algorithm 1 we
select m3.medium as the type for the second VM.

After the new VM is instantiated, the autoscaling component starts its mon-
itoring. It trains the ANN and a new dedicated HTM with its measurements.
It also updates the capacity repository with the CPU capacity of the new VM.
Surprisingly, we observe that on average its CPU capacity is about 35% better
than the one of the m1.small VM, even though according to the specification
m3.medium has 3 ECUs and m1.small has 1. Therefore, the previous extrap-
olation of m3.medium’s capacity has been an overestimation. Hence, when a
new VM is needed again, the algorithm selects m1.small again.

3.5 hours after the start of the experiment the workload change is injected.
This is reflected in the HTMs’ anomaly scores ank and the ANN’s errors. Conse-
quently, the learning rate lrk, the momentum mk and the epochs ek also change
to speed up the learning process as per equations 9, 10 and 11 and as a result
the ANN adapts quickly to the workload change. As discussed for each sample
we compute its error (RMSE-pre) before updating the ANN. Figure 8 depicts
how these errors increase when the change is injected and decrease afterwards
as the ANN adapts timely.

Eventually the load increases enough so the system needs to scale up again.
Due to the injected change, the workload has become much more memory in-
tensive, which is reflected in the ANN’s prediction. Hence m1.small can serve
just a few users, given it has only 1.7GB RAM. At that point the CPU capacity
of m1.medium is inferred from the capacities of m1.small and m3.medium as
per Eq. 4, since it has not been used before. Consequently Algorithm 1 selects
m1.medium for the 4th VM just before the experiment completes.
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Figure 8: RMSE-pre in the presence of a workload change. The 0 index corre-
sponds to the first sample after the workload change.

For each experiment, Figure 9 depicts the timelines of the allocated VMs
and the total experiment costs. For each VM the type and cost are specified
to the right. Our selection policy is listed as DVTS. The baseline policy which
statically selects m1.small allocates 8 new VMs after the workload change as
m1.small can serve just a few users under the new workload. In fact, if there was
no cool down period in the autoscaling, this baseline would have exceeded the
AWS limit of allowed number of VM instances before the end of the experiment.
The baselines which select m1.medium and m3.medium fail to make use of
m1.small instances before the change injection, which offers better performance
for money.

Admittedly, in the beginning DVTS did a misstep with the selection of
m3.medium, because it started with an empty capacity repository and had to
populate it and infer CPU capacities “on the go”. This could have been avoided
by prepopulating the capacity repository with test or historical data. We could
expect that such inaccuracies are avoided at later stages, once more capacity
and training data is present. Still, our approach outperformed all baselines in
terms of incurred costs with more than 20% even though its effectiveness was
hampered by the lack of contextual data in the initial stages.

Our experiments tested DVTS and the baselines with a workload, which
is lower than what is observed in some applications. While our tests did not
allocate more than 12 VMs (in the baseline experiment, which statically al-
locates m1.small) many real world systems allocate hundreds or even thou-
sands of servers. We argue that in such cases, DVTS will perform better than
demonstrated, as there will be much more training data and thus the VM types’
capacity estimations will be determined more accurately and the machine learn-
ing approaches will converge faster. As discussed, that would allow some of the
initial missteps of DVTS to be avoided. Moreover, as the number of AS VMs
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Time After Experiment Start

DVTS Total Cost:1.129$
0.348$, m1.small
0.490$, m3.medium
0.174$, m1.small
0.117$, m1.medium

AWS−style static (m1.small) Total Cost:1.508$
0.348$, m1.small
0.290$, m1.small
0.232$, m1.small
0.174$, m1.small
0.116$, m1.small
0.116$, m1.small
0.116$, m1.small
0.116$, m1.small
0.116$, m1.small
0.058$, m1.small
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0.058$, m1.small
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0.702$, m1.medium
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Figure 9: Timelines and costs of all VMs grouped by experiments. DVTS is
our approach. The AWS-style policies are the baselines, which statically select
a predefined VM type.

grows, so does the cost inefficiency caused by the wastage of allocated resources,
which can be reduced by DVTS.

Finally, the response times in the DVTS experiment and all baseline experi-
ments were equivalent. All experiments scale up once the AS VMs’ utilisations
exceed the predefined thresholds, and thus never become overloaded enough to
cause response delays. The load balancer is equally utilised in all experiments,
as it serves the same number of users, although it redirects them differently
among the AS VMs. Similarly, the DB layer is equally utilised, as it always
serves all users from all AS VMs.

8 Conclusions and future work

In this work we have introduced an approach for VM type selection when au-
toscaling application servers. It uses a combination of heuristics and machine
learning approaches to “learn” the application’s performance characteristics and
to adapt to workload changes in real time. To validate our work, we have de-
veloped a prototype, extended the CloudStone benchmark and executed ex-
periments in AWS EC2. We have made improvements to ensure our machine
learning techniques train quickly and are usable in real time. Also we have intro-
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duced heuristics to approximate VM resource capacities and workload resource
requirements even if there is no readily usable data, thus making our approach
useful given only partial knowledge. Results show that our approach can adapt
timely to workload changes and can decrease the cost compared to typical static
selection policies.

Our approach can achieve even greater efficiency, if it periodically replaces
the already running VMs with more suitable ones in terms of cost and per-
formance, once there is a workload change. We will also work on new load
balancing policies, which take into account the actual VM capacities. Another
promising avenue is optimising the scaling down mechanisms — i.e. selecting
which VMs to terminate when the load decreases. Also, we plan to extend our
approach, which currently optimises cost, to also consider other factors like en-
ergy efficiency. This would be important when executing application servers in
private clouds. Finally, we plan to incorporate in our algorithms historical data
about VM types’ resource capacity and workload characteristics.
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